Наша компания
Как улучшить устойчивость нейлона к УФ-старению?
ДОМ Распространенные проблемы при модификации нейлона: анализ и решения

Как улучшить устойчивость нейлона к УФ-старению?

Последний блог
ТЕГИ

Как улучшить устойчивость нейлона к УФ-старению?

July 23, 2025

Нейлон (полиамид) — это высокопроизводительный конструкционный пластик, широко используемый в автомобильных деталях, электронике, текстильных изделиях, спортивном инвентаре и снаряжении для активного отдыха. Благодаря своей превосходной механической прочности, износостойкости и химической стабильности. Однако длительное воздействие ультрафиолетового (УФ) излучения может привести к фотоокислительной деградации, вызывая разрыв цепи, пожелтение, меление поверхности и ухудшение механических свойств. Это существенно влияет как на срок службы, так и на внешний вид нейлоновых изделий, особенно при использовании вне помещений, например, для производства автомобильных экстерьеров, строительных материалов и спортивных товаров. Поэтому повышение устойчивость нейлона к ультрафиолетовому излучению посредством модификации материалов стало важнейшим направлением исследований в области полимерной науки и техники.

Поглотители ультрафиолетового излучения (UVA) Являются одной из наиболее эффективных добавок для повышения УФ-стойкости нейлона. Эти соединения селективно поглощают УФ-излучение (особенно в диапазоне 290–400 нм, включая УФ-А и УФ-В) и преобразуют его в безвредную тепловую энергию, тем самым минимизируя повреждение полимерной матрицы. К распространённым УФА-излучениям относятся бензотриазолы (например, Tinuvin 326, Tinuvin 328 компании BASF) и бензофеноны (например, Chimassorb 81 компании Clariant). Для обеспечения оптимальных характеристик УФА-излучение должно быть равномерно распределено в нейлоновой матрице, как правило, путём смешивания в расплаве или добавления в мастербатч. Исследования показывают, что добавление 0,5–2% УФА-излучения может значительно замедлить фотостарение, продлевая срок службы нейлона на открытом воздухе.

Светостабилизаторы на основе затрудненных аминов (HALS) – ещё один важный класс добавок для защиты от УФ-излучения. В отличие от UVA-активаторов, HALS не поглощают УФ-излучение, а вместо этого удаляют свободные радикалы, образующиеся при фотоокислении, тем самым предотвращая деградацию. Среди известных коммерческих продуктов HALS – Tinuvin 770 (BASF) и Cyasorb UV-3853 (Solvay). Благодаря своей долговременной стабильности HALS особенно подходят для применения в изделиях, требующих высокой прочности. Важно отметить, что UVA-активаторы и HALS обладают синергетическим эффектом: их сочетание (например, Tinuvin 326 + Tinuvin 770) обеспечивает комплексную защиту от УФ-излучения, поглощая излучение и подавляя реакции с радикалами, что значительно повышает атмосферостойкость нейлона.

Включение неорганических наночастиц — ещё одна эффективная стратегия повышения устойчивости к УФ-излучению. Оксиды металлов, такие как диоксид титана (TiO₂) и оксид цинка (ZnO), широко используются благодаря своей способности рассеивать и отражать УФ-излучение. Рутил TiO₂ с его высоким показателем преломления обеспечивает отличную блокировку УФ-излучения, одновременно повышая жёсткость и термическую стабильность. Нано-ZnO не только защищает от УФ-излучения, но и обладает антибактериальными свойствами, что делает его пригодным для использования в медицине и упаковке. Для обеспечения равномерного распределения часто применяется модификация поверхности (например, силановые связующие агенты), предотвращающая агломерацию и улучшающая межфазную адгезию. Кроме того, для защиты от УФ-излучения изучаются современные наноматериалы, такие как углеродные нанотрубки (УНТ) и графен, поскольку они могут поглощать излучение, одновременно улучшая электропроводность и механическую прочность.

смешивание полимеров — ещё один действенный подход к повышению УФ-стойкости. Смешивание нейлона с изначально устойчивыми к УФ-излучению полимерами (например, поликарбонатом (ПК) или полифениленоксидом (ПФО)) позволяет снизить его подверженность деградации. Однако из-за плохой совместимости для улучшения межфазной адгезии часто требуются компатибилизаторы (например, полиэтилен с привитым малеиновым ангидридом). Химические модификации, такие как прививка или сшивание, также могут повысить УФ-стойкость. Например, введение акрилатных или стирольных мономеров в цепи нейлона может снизить фотоокисление, повышая долговременную стабильность.

На практике выбор стратегии УФ-стабилизации зависит от стоимости, требований к обработке и условий конечного использования. Для наружных деталей автомобилей (например, дверных ручек, корпусов зеркал) требуются высокопрочные комбинации УФ-А/HALS с армированием стекловолокном для обеспечения размерной стабильности. В отличие от этого, для электронных компонентов (например, разъёмов, корпусов) могут использоваться меньшие дозы стабилизатора из-за более мягких условий эксплуатации. Для оптически прозрачных материалов (например, плёнок) предпочтительны низкомолекулярные бензотриазолы для сохранения прозрачности.

Будущие тенденции включают разработку экологичных УФ-стабилизаторов (например, производных лигнина, полифенолов) и интеллектуальных материалов (например, фотохромных добавок) для современных применений. Благодаря постоянным инновациям, устойчивость нейлона к УФ-излучению будет и дальше повышаться, что позволит использовать его в ещё более суровых условиях.

Оставить сообщение

Оставить сообщение
Если вас заинтересовала наша продукция и вы хотите узнать больше подробностей, оставьте сообщение здесь, и мы ответим вам как можно скорее.
ПРЕДСТАВЛЯТЬ НА РАССМОТРЕНИЕ

ДОМ

ПРОДУКЦИЯ

WhatsApp

Контакт